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The Keldysh boundary problem in a nonequilibrium Falicov-Kimball model in infinite dimensions is studied
within the truncated and self-consistent perturbation theories and the dynamical mean-field theory. Within the
model the system is started in equilibrium, and later a uniform electric field is turned on. The Kadanoff-Baym-
Wagner equations for the nonequilibrium Green’s functions are derived and numerically solved. The contribu-
tions of initial correlations are studied by monitoring the system evolution. It is found that the initial correla-
tions are essential for establishing the full electron correlations of the system and are independent of the
starting time of preparing the system in equilibrium. By examining the contributions of the initial correlations
to the electric current and the double occupation, we find that the contributions are small in relation to the total
value of those physical quantities when the interaction is weak, and significantly increase when the interaction
is strong. The neglect of initial correlations may cause artifacts in the nonequilibrium properties of the system,
especially in the strong-interaction case.
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I. INTRODUCTION

The theoretical description of the physical properties of
nonequilibrium correlated electron systems is an important
problem in condensed-matter physics. Often in transport pro-
cesses correlated electron systems are driven out of equilib-
rium by switching on external fields. The systems can be also
driven out of equilibrium by suddenly changing their param-
eters. Nonequilibrium correlated electron systems, which can
be realized in many experiments, may have unusual and in-
teresting properties. One such system is the quantum dot
attached to two leads through two tunnel junctions.1–3 The
conductance of the dot reveals a nonequilibrium Kondo ef-
fect. Other examples are the effects of electron correlations
on the nonlinear current-voltage characteristics.4,5 Recently,
experiments with ultracold atomic gases have made it pos-
sible to prepare an initial state with a rapid change in system
parameters, and observed remarkable subsequent dynamics
as a collapse and revival of the initial phase.6,7

The many-body formalism for nonequilibrium systems
was developed by many people, including Kubo,8

Schwinger,9 Kadanoff and Baym,10 and Keldysh11 �see also
Refs. 12 and 13 for reviews�. In particular, Kadanoff and
Baym10 constructed a system of equations for the nonequi-
librium Green’s functions. Parallel to this development,
Keldysh11 also derived a perturbation theory for the nonequi-
librium Green’s functions. Like the Feynman perturbation
theory for equilibrium systems,14 the Keldysh nonequilib-
rium perturbation theory is based on the assumption of an
adiabatic switching on of the many-body interactions. The
assumption is necessary for the application of the Wick theo-
rem, which requires a quadratic form of the system Hamil-
tonian at the initial preparation of the system. While the as-
sumption is exactly proved in scattering theory,14 its
application to nonequilibrium many-body systems imposes
restrictions.15–17 It turns out that the assumption corresponds
to the neglect of the so-called initial correlations.15–17 De-
spite the neglect of the initial correlations, the Keldysh

theory is widely used in the study of nonequilibrium sys-
tems. Wagner17 unified the Feynman, Matsubara, and
Keldysh perturbation theories into a single many-body for-
malism in which neither a special form of the Hamiltonian at
the initial time nor the subsequent time development of the
system is restricted. He introduced a matrix representation
for the contour-ordered Green’s function and derived the
Kadanoff-Baym equations for the nonequilibrium Green’s
functions. In the Kadanoff-Baym-Wagner formalism, the ini-
tial correlations are fully taken into account. While the non-
equilibrium formalism is well established, the role of the
initial correlations is less attended, especially for nonequilib-
rium strongly correlated electron systems. In particular, it
would be desirable to test whether the initial correlations
which are neglected in the Keldysh formalism are negligible
or not. The difficulties of studying the initial correlations are
mostly due to the lack of methods for getting the exact so-
lutions of nonequilibrium correlated electron systems.

In the last decade, the dynamical mean-field theory
�DMFT� was developed.18,19 In the equilibrium case the
theory is widely and successfully applied to the study of
strongly correlated electron systems. The DMFT gives the
exact solutions in infinite dimensions. Recently, a version of
the DMFT for nonequilibrium systems was developed.20 The
nonequilibrium dynamical mean-field theory �NEDMFT� is
formally formulated on the same basis as that of the equilib-
rium DMFT. Like the equilibrium case, in infinite dimen-
sions the self-energy of nonequilibrium systems becomes a
local function in space. As a consequence, it can be self-
consistently determined by mapping the lattice problem onto
an effective problem of a single site embedded in a self-
consistent effective medium. When the self-consistent equa-
tions are solved, the nonequilibrium Green’s functions are
obtained and various physical quantities can be calculated.

The aim of the present paper is twofold. First, we study
the contributions of the initial correlations in a nonequilib-
rium correlated electron system. The initial correlations are
studied within truncated and self-consistent perturbation
theories as well as within the NEDMFT. The Keldysh per-
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turbation theory usually argues for the neglect of the initial
correlations. However, in the present paper the results ob-
tained within the truncated and self-consistent perturbation
theories show that the initial correlations are always finite
even when the initial time is in the remote past limit. In the
infinite dimension limit, the initial correlations can also be
obtained exactly since in this limit the NEDMFT gives the
exact solutions. In such way one can find under what circum-
stance the Keldysh formalism is safely applied to nonequi-
librium correlated electron systems. The second aim of the
present paper is to derive the Kadanoff-Baym-Wagner equa-
tions for the nonequilibrium Green’s functions within the
NEDMFT. These equations are an alternative to the original
NEDMFT equations for the contour-ordered Green’s
function.20 Within the Kadanoff-Baym-Wagner formalism,
the nonequilibrium Green’s functions clearly satisfy their
boundary conditions. The Kadanoff-Baym-Wagner formal-
ism already includes the Keldysh formalism as its part, and it
is suitable for studying the initial correlations. In this paper
we will examine the initial correlations within a Keldysh
boundary problem. The problem works in a system which is
first started in equilibrium and then is driven out of equilib-
rium by turning on of an external field. The model which we
adopt to describe the system is a nonequilibrium Falicov-
Kimball model. The Falicov-Kimball model �FKM� was first
introduced for modeling a metal-insulator transition at
equilibrium.21 The model is one of the simplest models for
studying strongly correlated electron systems. The FKM de-
scribes conduction electrons interacting via a repulsive con-
tact potential with localized electrons. It can be viewed as a
simplified Hubbard model where electrons with down spin
are frozen and do not hop. Much progress has been made on
solving this model in both exact and approximation ways,
where all the properties of the conduction electrons at equi-
librium are well known.22–24 At equilibrium the FKM de-
scribes a metal-insulator transition for the homogeneous
phase.22–24 The Coulomb interaction is divided into two
ranges: the weak-interaction range, where the interaction
strength is smaller than the half bare bandwidth, and the
strong-interaction one, the opposite case. For weak interac-
tions the system is metallic, and for strong ones the system is
an insulator. The system is driven out of equilibrium by a
constant electric field. The electric field is switched on at
some time after the initial preparation of the system in equi-
librium. This nonequilibrium FKM was introduced by Freer-
icks et al.20 in the study of the Bloch oscillations in the
electric current within the NEDMFT. In the present paper we
derive the Kadanoff-Baym-Wagner equations of the NED-
MFT for the nonequilibrium FKM, and calculate the contri-
butions of the initial correlations to the electric current and
the double occupation. It is found that the contributions of
the initial correlations to the electric current and the double
occupation are small in relation to the full value of those
physical quantities in the weak-interaction case, and signifi-
cantly increases in the strong-interaction case. However,
without the initial correlations the system cannot restore full
electron correlations even before the turning on of the elec-
tric field. The neglect of the initial correlations may cause
artifacts in the nonequilibrium properties of the system.

The paper is organized as follows: In Sec. II we present
the Kadanoff-Baym-Wagner nonequilibrium formalism, and

describe the nonequilibrium FKM. In Secs. III–V we present
the studies of the model within the truncated and self-
consistent perturbation theories and the NEDMFT. Section
VI is the conclusion.

II. FORMALISM AND MODEL

We consider the Keldysh boundary problem in a nonequi-
librium system which is first prepared in equilibrium and
then is driven out of equilibrium by switching on of an ex-
ternal field or by a sudden change of its parameters. Specifi-
cally, at an initial time t0 the system is prepared in equilib-
rium, which is defined by the equilibrium Hamiltonian Heq
and temperature 1 /�. At time t=0 �t0�0� an external field is
switched on or its parameters are suddenly changed. Usually,
in nonequilibrium systems the time translational invariance
is not valid, and Green’s functions, which are employed in
studying the physical properties of the systems, depend on
the two time variables. The nonequilibrium formalism works
with the so-called contour-ordered Green’s function, which is
defined for the time variables on the Kadanoff-Baym
contour.10–13 The Kadanoff-Baym contour is shown in Fig. 1.
The contour starts at the initial time t0, runs out up to maxi-
mal time tm, then returns to the initial time, and finally moves
parallel to the negative imaginary axis a distance �. At the
initial time t0, the system is always in equilibrium. The
Kadanoff-Baym contour is suitable for deriving the Dyson
equation for the contour-ordered Green’s function. Keldysh11

also introduced a similar contour for the contour-ordered
Green’s function. The Keldysh contour is basically the same
as the Kadanoff-Baym contour, but it neglects the last con-
tour branch parallel to the imaginary axis and limits t0 to
minus infinity. The neglect of the last branch of the contour
corresponds to the neglect of initial correlations. The
contour-ordered Green’s function is defined by

Gc�i, j�t̄, t̄�� = − i�Tcci�t̄�cj
†�t̄��� = − i�c�t̄, t̄���ci�t̄�cj

†�t̄���

+ i�c�t̄�, t̄��cj
†�t̄��ci�t̄�� , �1�

where ci
† �ci� are the creation �annihilation� operators for

electrons at site i. The time evolution of the operators on the
Kadanoff-Baym contour is defined in the Heisenberg picture.
Tc is the time ordering on the Kadanoff-Baym contour and it
is defined via the contour step function �c�t̄ , t̄��. �c�t̄ , t̄�� is
equal to 1 if t̄ lies after t̄� on the contour, and it is equal to 0
if otherwise. The averages in Eq. �1� are the statistical aver-
ages over the equilibrium Hamiltonian Heq at temperature
1 /�. The Kadanoff-Baym contour consists of three time
branches: The first branch is chronological, the second one is

FIG. 1. Kadanoff-Baym contour for the two-time Green’s func-
tions in nonequilibrium.
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antichronological, and the last one is parallel to the imagi-
nary axis. Thus, we can represent the contour-ordered
Green’s function by a 3�3 matrix G���t̄ , t̄��, where t̄ locates
on the �th branch and t̄� locates on the �th branch. In such
way, the contour-ordered Green’s function has nine compo-
nent Green’s functions; however they are not independent.
Wagner17 reduced the matrix representation of the contour-
ordered Green’s function to a matrix form of six component
Green’s functions, and five of them are independent. The
Wagner matrix representation for the contour-ordered
Green’s function can be written as follows:17

Ĝ = �GR GK �2G�

0 GA 0

0 �2G� GM � , �2�

where

GR�t,t�� = G11�t,t�� − G12�t,t�� = − i��t − t���	ci�t�,cj
†�t��
� ,

GA�t,t�� = G12�t,t�� − G22�t,t�� = i��t� − t��	ci�t�,cj
†�t��
� ,

GK�t,t�� = G12�t,t�� + G21�t,t�� = − i��ci�t�,cj
†�t���� ,

GM�	,	�� = G33�t0 − i	,t0 − i	�� = − i�T	ci�t0 − i	�cj
†�t0 − i	��� ,

G��t,	�� = G13�t,t0 − i	�� = i�cj
†�t0 − i	��ci�t�� ,

G��	,t�� = G31�t0 − i	,t�� = − i�ci�t0 − i	�cj
†�t��� ,

where t and t� are real times and 0
	 ,	�
�. In the above
equations we have used the commutator symbol �A ,B�=AB
−BA and the anticommutator symbol 	A ,B
=AB+BA. GR�A�

are the retarded �advanced� Green’s functions, and GK is the
Keldysh Green’s function. These Green’s functions are de-
fined totally on the real time axis. GM is the Matsubara
Green’s function and is defined on the imaginary time branch
of the Kadanoff-Baym contour. Note that the above defini-
tion of the Matsubara Green’s function differs from the stan-
dard one by a factor of i.14 The Green’s functions G� and G�

have one time variable on the real time axis, and the other
variable is on the imaginary time branch.25 They do not have
a specific name; however we will refer to them as the right
and left time mixing Green’s functions, respectively. The left
corner 2�2 matrix in the Wagner matrix representation in
Eq. �2� is the Keldysh representation of the nonequilibrium
Green’s functions in the Keldysh perturbation theory.11 The
Matsubara Green’s function is just the equilibrium Green’s
function at temperature 1 /�. It couples with the Keldysh
Green’s function through the time mixing Green’s functions.
If the time mixing Green’s functions are neglected, the
Kadanoff-Baym-Wagner formalism reduces to the Keldysh
formalism.

Within the Wagner matrix representation, the Dyson equa-
tion for the nonequilibrium Green’s functions can be written
in the standard form like that in the equilibrium case,

Ĝ = Ĝ0 + Ĝ0 • �̂ • Ĝ , �3�

where Ĝ0 is the bare Green’s function and �̂ is the self-
energy. The self-energy is also written in the Wagner matrix
representation,

�̂ = ��R �K �2��

0 �A 0

0 �2�� �M � . �4�

Note that in Dyson equation �3�, the product symbol • de-
notes not only the matrix multiplication but also the integra-
tion over the time variables. We also omitted other variable
notations such as those of momentum or spin to simplify the
equation writing. We introduce the inverse matrix Green’s

function Ĝ̃ by using the standard definition

Ĝ̃ • Ĝ = 1̂. �5�

The inverse matrix Green’s function is also presented in the
Wagner matrix representation. One can find its elements by
explicitly writing the component equations of Eq. �5�:

G̃R/A · GR/A = 1̂, �6�

G̃M � GM = 1̂, �7�

G̃R · GK + G̃K · GA + 2G̃� � G� = 0, �8�

G̃R · G� + G̃� � GM = 0, �9�

G̃� · GA + G̃M � G� = 0. �10�

Here the dot and star products are the integrations over the
real time and the imaginary time variables, respectively, i.e.,

�A · B��t̄, t̄�� = 
t0

tm

dt1A�t̄,t1�B�t1, t̄�� ,

�A � B��t̄, t̄�� = − i
0

�

d	1A�t̄,	1�B�	1, t̄�� .

The symbol 1̂ is just the delta function of the time variables.
For real time variables it is ��t− t��, and for imaginary time

variables it is i��	−	��. One can view G̃R/A/M as the inverse
matrices of GR/A/M in continuous time variables. However,

G̃K/�/� are not inverses of the corresponding Green’s functions.
Dyson equation �3� can be rewritten as follows:

Ĝ̃0 • Ĝ = 1̂ + �̂ • Ĝ , �11�

where Ĝ̃0 is the inverse matrix of Ĝ0, and its elements can be
found from Eqs. �6�–�10� for the bare Green’s functions.
Equation �11� can be written in the explicit form for the
component Green’s functions:

G̃0
R/A · GR/A = 1̂ + �R/A · GR/A, �12�
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G̃0
M � GM = 1̂ + �M � GM , �13�

G̃0
R · G� = �R · G� + ��� − G̃0

� � � GM , �14�

G̃0
M � G� = �M � G� + ��� − G̃0

� � · GA, �15�

G̃0
R · GK = �R · GK + ��K − G̃0

K� · GA + 2��� − G̃0
� � � G�.

�16�

Equations �12�–�16� are just the Kadanoff-Baym equations
for the nonequilibrium Green’s functions written in the Wag-
ner representation. In the standard Kadanoff-Baym
equations,10,17 the inverse bare Green’s functions are written
in the form of differential operators. These differential equa-
tions also require additional boundary conditions. In
Kadanoff-Baym-Wagner equations �12�–�16�, the inverse
bare Green’s functions have their explicit forms and they
satisfy their boundary conditions. Instead of differential-
integral equations in the Kadanoff-Baym formalism of the
contour-ordered Green’s function, Kadanoff-Baym-Wagner
equations �12�–�16� are just integral equations. Once the self-
energy is computable, Kadanoff-Baym-Wagner equations
�12�–�16� can be solved. First we solve Eqs. �12� and �13� for
the retarded, advanced, and Matsubara Green’s functions.
These equations can be solved independently. Certainly, the
advanced Green’s function can be quickly obtained from the
retarded Green’s function by using the relation

GA�t,t�� = �GR�t�,t���. �17�

Moreover, Matsubara equation �13� is the equilibrium equa-
tion and we can also use the equilibrium techniques to cal-
culate the Matsubara Green’s function. Next we use the re-
tarded, advanced, and Matsubara Green’s functions as the
inputs and solve the next two equations for the time mixing
Green’s functions. Finally, we solve the last equation for the
Keldysh Green’s function. The Kadanoff-Baym-Wagner
equation for Keldysh Green’s function �16� can be rewritten
as

GK = �1̂ + GR · �R� · G0
K · �1̂ + �A · GA� + GR · �K · GA

− 2GR · �G̃0
� � G0

M � G̃0
� − ��� − G̃0

� �

� GM � ��� − G̃0
� �� · GA. �18�

Here we have used Eqs. �8� and �10� for G̃0
K and G̃0

� and Eqs.
�12� and �15� for the retarded �advanced� and time mixing
Green’s functions. If the time mixing Green’s functions are
neglected, Kadanoff-Baym-Wagner equation �18� is reduced
to the Keldysh equation

GK = �1̂ + GR · �R� · G0
K · �1̂ + �A · GA� + GR · �K · GA.

�19�

The Keldysh formalism neglects the contributions generated
from the dynamics of the system in the imaginary time
branch of the Kadanoff-Baym contour. Since at the initial
time t0 the system is prepared in equilibrium with full inter-
action, the neglected contributions are correlations of elec-

trons between the initial time and an advanced time. Indeed,
if we neglect the correlation effects of the Matsubara and the
time mixing Green’s functions �i.e., �M/�/�=0�, the last term
in Eq. �18� vanishes, and we again obtain the Keldysh equa-
tion. The neglected contributions are called initial
correlations.13,15–17 The initial correlations distinguish be-
tween the Kadanoff-Baym-Wagner and the Keldysh formal-
isms. One can notice that the equations for the retarded and
advanced Green’s functions are decoupled from the system
of equations. Hence the nonequilibrium density of states re-
mains the same in both the Kadanoff-Baym-Wagner and the
Keldysh formalisms. The initial correlations do not affect the
nonequilibrium density of states. They affect only the non-
equilibrium distribution function. Thus the initial correla-
tions give contributions only to physical quantities which
depend on the nonequilibrium distribution function.

The model we will study is the FKM with the external
electric field turned on at t=0. At the initial time t0, the
system is prepared in equilibrium with temperature 1 /� and
the FKM Hamiltonian

Heq = − �
i,j

Jijci
†cj − �

i

ci
†ci + Ef�

i

f i
†f i + U�

i

ci
†cif i

†f i,

�20�

where ci
† �ci� are the creation �annihilation� operators for

conduction electrons at site i, and f i
† �f i� are the creation

�annihilation� operators for localized electrons at site i. Jij is
the hopping matrix of conduction electrons; it is equal to J
for nearest-neighbor sites, and it is 0 otherwise. U is the
strength of the interaction between the conduction and local-
ized electrons.  and Ef are the chemical potentials of the
conduction and localized electrons, respectively. In this pa-
per we will only consider the half filling case. It turns out
that in the half filling case, =−Ef =U /2. At time t=0 a
spatially uniform electric field is turned on. We choose the
gauge with vanishing of the scalar potential for the electric
field. As a result the electric field is described by a spatially
uniform vector potential A�t�=−��t�Et. The electric field
couples to the conduction electrons through the Peierls sub-
stitution for the hopping matrix,

Jij → Jij exp�− ie
Ri

Rj

drA�r,t��
= Jij exp�− ieA�t��R j − Ri�� . �21�

By replacing the hopping matrix in Hamiltonian in Eq. �20�
with Eq. �21�, we obtain the full nonequilibrium Hamiltonian
of the system. This nonequilibrium FKM was introduced by
Freericks et al.20 in the study of the NEDMFT. The consid-
ered nonequilibrium FKM differs from the equilibrium FKM
only by the bare energy spectra

��k,t� = �„k − eA�t�… = − 2J�
i=1

d

cos�ki − eAi�t�� , �22�

where d is the space dimension of the system. We will con-
sider the case where the electric field lies along the elemen-
tary cell diagonal,
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A�t� = A�t��1,1, . . . ,1� .

In this case the bare energy spectra becomes

��k,t� = cos�eA�t����k� + sin�eA�t���̄�k� , �23�

where

��k� = − 2J�
i=1

d

cos�ki� ,

�̄�k� = − 2J�
i=1

d

sin�ki� .

In the limit of infinite dimensions, d→�, the bare density of
states has a double Gaussian form,

���, �̄� = �0����0��̄� , �24�

where �0���=exp�−�2� /��. Here we have used J�=J�d as
the unit of energy.

The nonequilibrium bare Green’s functions can be found
from the equations of motion. The equation of motion for the
retarded Green’s function reads

�i�t + 0 − ��k,t��G0
R�k�t,t�� = ��t − t�� ,

where 0 is the chemical potential of the noninteracting con-
duction electrons. At half filling, 0=0. With the boundary
condition G0

R�k � t , t�=−i, we can find the bare nonequilibrium
retarded Green’s function

G0
R�k�t,t�� = − i��t − t��ei0�t−t�� exp�− i

t�

t

dt1��k,t1�� .

�25�

Similarly, one can find the bare advanced, Keldysh, and Mat-
subara Green’s functions

G0
A�k�t,t�� = i��t� − t�ei0�t−t�� exp�− i

t�

t

dt1��k,t1�� ,

�26�

G0
K�k�t,t�� = i�2f„��k� − 0… − 1�ei0�t−t��

�exp�− i
t�

t

dt1��k,t1�� , �27�

G0
M�k�	,	�� = − i���	 − 	�� − f„��k� − 0…�e−���k�−0��	−	��,

�28�

where f���=1 / �exp����+1� is the Fermi-Dirac distribution
function. The bare right time mixing Green’s function can be
found from the equation of motion

�i�t + 0 − ��k,t��G0
� �k�t,	�� = 0,

with the boundary condition G0
� �k � t0 ,	��=G0

M�0,	��. We ob-
tain

G0
� �k�t,	�� = − i���− 	�� − f„��k� − 0…�

�e���k�−0�	�ei0�t−t0� exp�− i
t0

t

dt1��k,t1��
= iG0

R�k�t,t0�G0
M�k�0,	�� , �29�

since t� t0. Similarly, the bare left time mixing Green’s func-
tion is

G0
� �k�	,t�� = − i���	� − f„��k� − 0…�

�e−���k�−0�	ei0�t�−t0� exp�i
t0

t�
dt1��k,t1��

= − iG0
M�k�	,0�G0

A�k�t0,t�� . �30�

The nonequilibrium bare Green’s functions clearly satisfy
their boundary conditions. When the self-energy is comput-
able, it, together with the bare Green’s functions, fully deter-
mines the nonequilibrium Green’s functions via Kadanoff-
Baym-Wagner equations �12�–�16�. In Secs. III–V we will
solve the Kadanoff-Baym-Wagner equations with the self-
energy calculated within the truncated and self-consistent
perturbation theories as well as within the NEDMFT.

III. TRUNCATED PERTURBATION THEORY

In this section we calculate the nonequilibrium Green’s
functions and the electric current within the truncated pertur-
bation theory of second order in U. The perturbation calcu-
lations were previously performed within the Keldysh non-
equilibrium perturbation theory,26 where the initial
correlations are neglected. The purpose of this section is to
find the contributions of the initial correlations to the electric
current within the truncated perturbation theory.

In the half filling case, the first-order perturbation contri-
butions to the self-energy vanish.26 The second-order self-
energy can be found by expanding the contour-ordered
Green’s function to second order in U. One can find26

�2
��t,t�� = U2nf�1 − nf�

1

N
�
k

G0
��k�t,t�� , �31�

where �=R ,A ,M ,K , � , � and nf =1 /2 is the density of the
localized electrons at half filling. Within the second-order
perturbation, the self-energy does not depend on momentum.
This feature is similar to the DMFT, where the self-energy is
a function of time variables only. Using Dyson equation �3�,
we can obtain the nonequilibrium Green’s functions up to
second order in U,

G2
��k�t,t�� = G0

��k�t,t�� + �G2
��k�t,t�� , �32�

where

�G2
R/A = G0

R/A · �2
R/A · G0

R/A, �33�

�G2
M = G0

M � �2
M � G0

M , �34�

�G2
� = G0

� · �2
A · G0

A + G0
M � �2

� · G0
A + G0

M � �2
M � G0

� ,

�35�
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�G2
� = G0

R · �2
R · G0

� + G0
R · �2

� � G0
M + G0

� � �2
M � G0

M ,

�36�

�G2
K = G0

R · �2
R · G0

K + G0
R · �2

K · G0
A + G0

K · �2
A · G0

A

+ 2G0
R · �2

� � G0
� + 2G0

� � �2
� · G0

A + 2G0
� � �2

M � G0
� .

�37�

Here, for simplicity we omitted the variable notations in the
Green’s functions and the self-energy. In comparison to the
Keldysh perturbation theory, the Kadanoff-Baym-Wagner
perturbation expansions of the retarded and advanced
Green’s functions remain unchanged.26 However, the second-
order perturbation expansion of the Keldysh Green’s func-
tion is different. It consists of two parts. The first part is the
first three terms in Eq. �37�, which are also the perturbation
contributions within the Keldysh perturbation theory,26 and
the second part is the remaining last three terms, which are
additional contributions generated from the initial correla-
tions. The Keldysh perturbation theory neglects the second
part.

The electric current can be calculated by evaluating

I�t� = − ie
1

N�
k

v�k − eA�t��G��k�t,t� , �38�

where vi�k�=J� sin�ki� /�d is the velocity component and
G��k � t , t� is the equal time lesser Green’s function, which
can be calculated from the Keldysh Green’s function by us-
ing the relation

G��k�t,t� =
1

2
�GK�k�t,t� + i� . �39�

When the electric field lies along the diagonal, all compo-
nents of the electric current are equal, and the magnitude of
the current is

I�t� = �dIi�t� . �40�

By inserting the second-order perturbation expansions of the
self-energy in Eq. �31� and of the Green’s functions in Eq.
�32� into the current formulas in Eqs. �38�–�40�, we obtain
the electric current up to order U2,

I2�t� = I0�t� + �I2�t� , �41�

where I0�t� and �I2�t� are the zeroth- and second-order con-
tributions to the current. The zeroth-order current is

I0�t� = j0 d��0����f���sin�eA�t�� , �42�

where j0=e /�d. It is the electric current in the noninteraction
case. It exhibits the Bloch oscillations with period 2� /E, and
its amplitude is independent of time. In the noninteraction
case, the Bloch oscillations of the current occur when the
noninteracting electrons move in a lattice under a constant
electric field. In this case the system is a perfect conductor;
the periodicity of the lattice restricts the wave vector to lie in
the first Brillouin zone that leads to the oscillations of the
current.

After some analytical calculations, we also obtain the
second-order perturbation contributions to the current strictly
in the half filling case,

�I2�t� = �I2
K�t� + �I2

ic�t� , �43�

�I2
K�t� = j0

U2

4


t0

t

dt1
t0

t1

dt2 d�����tanh���

2
�

�exp�−
1

4
C2�t2,t1� −

1

2
S2�t2,t1���� cos��C�t2,t1��sin�eA�t�� +

1

2
sin��C�t2,t1��S�t2,t1�cos�eA�t���

+ j0
U2

16


t0

t

dt1
t0

t

dt2 d�����tanh���

2
�exp�−

1

4
C2�t2,t1� −

1

2
S2�t2,t1��sin��C�t2,t1��	C�t2,t1�sin�eA�t��

− S�t2,t1�cos�eA�t��
 , �44�

�I2
ic�t� = j0

U2

4


t0

t

dt1 d� d�����������exp�−
1

2
S2�t1,t0� + i�� − ���C�t1,t0�� f��� − f����

�� − �

�	S�t1,t0�cos�eA�t�� + i�� − ���sin�eA�t��
 + j0
U2

4
 d� d�����������f���f�− ��� sin�eA�t��

�� e���−��� − ��� − ��� − 1

�� − ���2 − f����
e���−��� + e−���−��� − 2

�� − ���2 � . �45�
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Here in order to simplify the expression, we have intro-
duced the functions

C�t2,t1� = 
t1

t2

dt� cos�eA�t��� ,

S�t2,t1� = 
t1

t2

dt� sin�eA�t��� .

Like the Keldysh Green’s function, the second-order current
also consists of two parts, �I2

K�t� and �I2
ic�t�. The first part,

�I2
K�t�, consists of the second-order contributions within the

Keldysh perturbation theory.26 The second part, �I2
ic�t�, con-

sists of the contributions of the initial correlations. The sec-
ond part is beyond the Keldysh perturbation theory.

In Fig. 2 we plot the electric current calculated within the
Kadanoff-Baym-Wagner and the Keldysh perturbation theo-
ries up to second order in U. For comparison we also plot the
exact result which is obtained by performing the NEDMFT
calculations �see Sec. V�. It shows that the current has the
Bloch oscillations with period of 2� /E, like the current in
the noninteraction case.20 However, the amplitude of the cur-
rent varies with time. The perturbation theories give reason-
able results for times smaller than �2 /U. The Kadanoff-
Baym-Wagner perturbation theory overestimates the current,
while the Keldysh perturbation theory underestimates it. Fig-
ure 2 also shows that the Kadanoff-Baym-Wagner perturba-
tion result is closer to the exact solution than the Keldysh
perturbation one at times right before the perturbation theo-
ries are broken down. In Fig. 2 we also plot the initial cor-
relation contribution �I2

ic�t� to the current. This part of the

current also oscillates with the same period as of the full
current. In Fig. 3 we plot the initial correlation part of the
current for various values of U and E. In contrast to the full
current, the amplitude of the initial correlation part does not
significantly vary with time. Since the initial correlation con-
tribution is calculated within the second-order perturbation
theory, its amplitude is proportional to U2 and almost inde-
pendent of the electric field. Usually, the Keldysh perturba-
tion theory argues that the initial correlations vanish when
the initial time approaches minus infinity. In Fig. 4 we plot
the current and its initial correlation part at a fixed time as
functions of the initial time t0. It shows that both the current
and its initial correlation part quickly approach constant val-
ues when �t0� increases. Even for t0=−5, the current and its
initial correlation part already reach the constant values. The
initial correlations never vanish, even when t0→−�. Thus
the Keldysh perturbation theory always neglects the nonva-
nishing initial correlations. However, within the truncated
perturbation theory, both the Keldysh and the Kadanoff-
Baym-Wagner formalisms only qualitatively describe the
physical properties when the perturbation theory works. The

FIG. 2. �Color online� The time dependence of the electric cur-
rent calculated within the Kadanoff-Baym-Wagner �KBW; red line�
and the Keldysh �K; blue line� perturbation theories �PTs�. The
exact NEDMFT calculation result and the initial correlation contri-
bution to the current are presented as the black and green lines,
respectively. The model parameters are U=0.5, �=10, t0=−10, and
E=1 �E=2� for the upper �lower� panel.

FIG. 3. �Color online�The second-order initial correlation con-
tribution to the current as a function of time for various U and E
�t0=−10 and �=10�.

FIG. 4. The electric current �solid line� calculated within the
KBW PT and its initial correlation part �dotted line� at time t=2 as
functions of the initial time t0 for U=0.5, E=1, and �=10.

INITIAL CORRELATIONS IN A NONEQUILIBRIUM… PHYSICAL REVIEW B 78, 125103 �2008�

125103-7



initial correlations do not qualitatively change the perturba-
tion results. Thus, the use of the Keldysh perturbation theory
is still convenient in the nonequilibrium study due to its
simple system of equations.

IV. SELF-CONSISTENT PERTURBATION THEORY

In this section we perform the self-consistent perturbation
calculations for the electric current. Instead of the standard
perturbation calculation in Eq. �31�, we take a self-consistent
approach by dressing the bare Green’s functions in the cal-
culation of the self-energy, i.e.,

���t,t�� = U2nf�1 − nf�
1

N
�
k

G��k�t,t�� . �46�

In this approximation only the Green’s functions of the con-
duction electrons are dressed. The Green’s functions of the
localized electrons are kept local; thus their contributions to
the self-energy of the conduction electrons are just nf�1
−nf�. We solve Kadanoff-Baym-Wagner equations �12�–�16�
with the self-energy determined by Eq. �46�. In order to solve
these equations, we adopt the discretization method which
was employed by Freericks et al.20,27 in solving the NED-
MFT equations. We discretize the time variables with step �t
for real time t and �	 for imaginary time 	. As a result the
real time domain is divided into L points, and the imaginary
time domain � is divided into M points. Thus, any function
of two time variables A�t̄ , t̄�� becomes a matrix Aij =A�t̄i , t̄ j�,
where t̄i= t̄ and t̄ j = t̄�. Integration over time can be approxi-
mated by the rectangular integration rule

 dt̄1A�t̄, t̄1�B�t̄1, t̄�� = �t̄�
l

A�t̄i, t̄l�B�t̄l, t̄ j� ,

where �t̄=�t for real time integration and �t̄=−i�	 for
imaginary time integration. Thus the time integration be-
comes a matrix multiplication. The inverse of the continuous
matrix function

 dt̄1A�t̄, t̄1�A−1�t̄1, t̄�� = ��t̄ − t̄��

in the discretization approach becomes

�t̄�
l

A�t̄i, t̄l�A−1�t̄l, t̄ j� =
�ij

�t̄
. �47�

Thus, in the discretization approach the Kadanoff-Baym-
Wagner equations become the matrix equations which can be
solved numerically. The time discretization is a numerical
approach which approximately solves the Kadanoff-Baym-
Wagner equations. It becomes exact only for �t̄→0. Never-
theless, it was shown that the discretization approach is an
efficient way to solve the nonequilibrium Green’s function
equations.20,27 Note that Kadanoff-Baym-Wagner equations
�12�–�16� differ from the contour-ordered Green’s-function
equation.20 Numerically, here we have to solve the equations
of matrices with sizes L�L, L�M, and M �M, instead of
matrices of size �2L+M�� �2L+M� in the contour-ordered
Green’s-function equation. It reduces the matrix size and
computation time. However, here we have to solve five equa-
tions with additional matrix multiplications. The inverse bare

Green’s functions G̃0
� are calculated from Eqs. �6�–�10� with

the inputs of the bare Green’s functions in Eqs. �25�–�30�.
Within the discretization accuracy, these inverse bare
Green’s functions are calculated exactly. They satisfy the
boundary conditions. For instance, the Matsubara Green’s
function has the antiperiodic property in the time variable, or
the Keldysh Green’s function satisfies G0

K�t0 , t0�
=2G0

M�0,0+�− i. In the contour-ordered Green’s-function ap-
proach, the inverse bare Green’s function contains a time
differential operator and it is also approximately discretized.
In the present approach the inverse bare retarded and ad-
vanced Green’s functions are numerically calculated from
their bare functions by the discretization inverse relation in
Eq. �47�. The inverse Matsubara Green’s function in the dis-
cretization form can be analytically obtained,

G̃0
M�k� = −

i

�	2�
1 0 0 ¯ e−��k��	

− e−��k��	 1 0 ¯ 0

0 − e−��k��	 1 0

] ] ] ]

0 ¯ ¯ ¯ − e−��k��	 1
� . �48�

Here we have taken into account that 0=0 at half filling. This inverse bare Matsubara Green’s function corresponds to the
bare Matsubara Green’s function with fixed diagonal elements G0

M�	 ,	�=−i�1− f(��k�)�. It is suitable for calculating the left
time mixing Green’s function because of the boundary condition G0

� �	 , t0�=G0
M�	 ,0� for 	�0. The right time mixing Green’s

function has the boundary condition G0
� �t0 ,	��=G0

M�0,	�� for 	��0; the Matsubara Green’s function suitable for its calcula-
tions has the diagonal elements G0

M�	 ,	�= if(��k�). The corresponding inverse bare Matsubara Green’s function has the matrix
form
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G̃0
M�k� =

i

�	2�
1 − e��k��	 0 ¯ 0

0 1 − e��k��	 0 ¯ 0

0 0 1 − e��k��	
]

] ] ] − e��k��	

e��k��	
¯ ¯ ¯ 0 1

� . �49�

For definiteness we also use this Matsubara Green’s function
for calculating the Keldysh Green’s function. The Green’s

functions G̃0
K/�/� can be also analytically obtained. From Eqs.

�6�–�10�, for the bare Green’s functions in Eqs. �25�–�30� one
can show that

G̃0
� �t,	�� = ��t − t0���	�� , �50�

G̃0
� �	,t�� = − ��	���t� − t0� , �51�

G̃0
K�t,t�� = i��t − t0���t� − t0� . �52�

In the Keldysh formalism, when the time mixing Green’s

functions are neglected, the Green’s function G̃0
K is little

changed. One can obtain

G̃0
K�t,t�� = − i�2f„��k�… − 1���t − t0���t� − t0� . �53�

In order to solve Kadanoff-Baym-Wagner equations
�12�–�16�, first we solve Eqs. �12� and �13� for the retarded
�advanced� and Matsubara Green’s functions, and then we
find the time mixing Green’s functions from Eqs. �14� and
�15�. Finally, the Keldysh Green’s function is calculated from
Eq. �16�. We use iterations to solve each equation. When the
nonequilibrium Green’s functions are obtained, we can com-
pute the electric current by using Eq. �38�. The momentum
summation in Eq. �46� and �38� indeed is the integration with
the double Gaussian density of states in Eq. �24�; we use a
Gaussian quadrature to calculate it. Typically, we use 51
points for the Gaussian quadrature. In Sec. V we will discuss
this type of integrations in detail. The calculated current con-
verges with �t well. We can obtain reliable results at �t
→0 by using a Lagrange interpolation formula. Typically,
we use a quadratic interpolation to obtain the current in the
continuous limit. In Fig. 5 we plot the electric current ob-
tained within the Kadanoff-Baym-Wagner self-consistent
perturbation theory. For comparison we also plot the exact
NEDMFT calculation result �see also Sec. V�. Figure 5
shows that the self-consistent perturbation theory gives very
good results for times smaller than 2 /U. In comparison with
the truncated perturbation theory, the self-consistent pertur-
bation theory gives reasonable results in a wide range of the
time variable. The current obtained within the self-consistent
perturbation theory also oscillates with time and is damped
to zero value. Even for large electric fields �for instance, E
=1�, the time damping of the current is still observed in the
self-consistent perturbation results similar to the exact solu-
tion. However, for larger electric fields �for instance, E=2�,

the self-consistent perturbation theory cannot reproduce the
beat behavior of the current, as shown in the lower panel of
Fig. 5. It shows that the self-consistent perturbation theory
may produce artifacts, especially for nonequilibrium steady
state. However, this happens only for very strong electric
fields. We define the initial correlation contribution to the
current as the difference between the currents calculated
within the Kadanoff-Baym-Wagner and the Keldysh self-
consistent perturbation theories. In contrast to the results of
the truncated perturbation theory, the initial correlation part
of the current is damped with time, and its amplitude is sig-
nificantly smaller. We plot the initial correlation contribution
to the current for various values of U and E in Fig. 6. It
shows that the amplitude of the initial correlation part is not
scaled with U2. For the long-time limit, the initial correlation
contribution to the current vanishes. In this case the Keldysh
and the Kadanoff-Baym-Wagner formalisms give the same
steady state. However, it may be an artifact, especially for
very strong electric fields when the exact current exhibits the
beat behavior. This also indicates that the self-consistent per-
turbation theory may not work well for very strong electric

FIG. 5. �Color online� The time dependence of the electric cur-
rent calculated within the KBW self-consistent perturbation theory
�SCPT; red line�. The exact NEDMFT calculation result and the
initial correlation contribution to the current are presented as the
black and green lines, respectively. The current was already scaled
with a quadratic extrapolation ��t=0.1, 0.065, and 0.05 and �	
=0.1�. The model parameters are U=0.5, t0=−5, �=10, and E=1
�E=2� for the upper �lower� panel.
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fields. Nevertheless, within the self-consistent perturbation
theory, the Keldysh formalism qualitatively gives almost the
same results as those of the Kadanoff-Baym-Wagner formal-
ism. The initial correlations do not qualitatively change the
perturbation results.

V. NONEQUILIBRIUM DYNAMICAL MEAN-FIELD
THEORY

In this section we present the NEDMFT through the
Kadanoff-Baym-Wagner representation. The NEDMFT was
proposed by Freericks et al.20 and it is based on the same
idea as the DMFT in equilibrium. The NEDMFT has the
same principal features as that of the equilibrium DMFT. It
becomes exact in the infinite dimension limit. In infinite di-
mensions the self-energy is purely local in space. It can be
determined by mapping the lattice problem onto an effective
problem of a single site embedded in a self-consistent effec-
tive medium. The effective medium can be represented by a

Green’s function Ĝ which is determined by the Dyson equa-
tion

Ĝ = Ĝ + Ĝ • �̂ • Ĝ , �54�

where Ĝ=�kĜ�k� /N. From this equation we can find the
components of the effective-medium Green’s function in the
Kadanoff-Baym-Wagner representation such as Eqs.
�12�–�16�. We obtain

G̃R/A = G̃R/A + �R/A, �55�

G̃M = G̃M + �M , �56�

G̃� = �� − G̃R · G� � G̃M , �57�

G̃� = �� − G̃M � G� · G̃A, �58�

G̃K = �K − G̃R · GK · G̃A + 2��� − G̃�� � G� · G̃A, �59�

where Ĝ̃ and Ĝ̃ are the inverse matrices of Ĝ and Ĝ, respec-
tively. Equations �55�–�59� are the Kadanoff-Baym-Wagner
equations for determining the effective-medium Green’s

function Ĝ̃. Once the effective-medium Green’s function Ĝ̃ is
determined, we can compute the single-site Green’s function.
In the homogeneous phase we obtain20

Ĝimp = �1 − nf�Q̂0 + nfQ̂1, �60�

where nf is the localized electron density and Q̂l with l
=0,1 satisfy the following equation:

�Ĝ̃ + � − lU� • Q̂l = 1̂. �61�

Here �=−0. One can find explicitly the components of

Q̂l by using the inverse equations �Eqs. �6�–�10��,

Ql
R/A = �G̃R/A + �g̃l

R/A�−1, �62�

Ql
M = �G̃M + �g̃l

M�−1, �63�

Ql
� = − Ql

R · G̃� � Ql
M , �64�

Ql
� = − Ql

M � G̃� · Ql
A, �65�

Ql
K = − Ql

R · G̃K · Ql
A + 2Ql

R · G̃� � Ql
M � G̃� · Ql

A, �66�

where �g̃l
�= g̃��0+�− lU�− g̃��0�, with �=R ,A ,M, and

g̃��x� is the inverse of the bare Green’s function g��x� of a
pure noninteracting single site with zero energy level and the
chemical potential x. Note that in the numerical calculations,
when we make the discretization of the time variable, the
quantity �− lU does not lie in the diagonal of the matrices
of the inverse retarded �advanced� or Matsubara Green’s
functions. It lies in the first subdiagonal of the matrices like
in Eqs. �48� and �49�. In such way we can compute the

single-site Green’s function Ĝimp. However, it is applicable
only to nonequilibrium FKM. For other models such as the
Hubbard model one may adopt different techniques to solve
the effective single-site problem.

The self-consistent condition requires that

Ĝimp = Ĝ . �67�

With this self-consistent condition, when the effective single-
site problem is solved, we can again compute the self-energy
from Kadanoff-Baym-Wagner equations �55�–�59�. When the
self-energy is obtained, the full lattice Green’s functions are
calculated from Kadanoff-Baym-Wagner equations
�12�–�16�. Thus we obtain a closed system of equations for
the nonequilibrium Green’s functions in the NEDMFT. Like
in Sec. IV, first we solve the set of equations of the retarded
�advanced� and Matsubara Green’s functions. Then use the
obtained Green’s functions to solve the set of equations of
the time mixing Green’s functions. Finally, we compute the
Keldysh Green’s function from its set of equations. We use

FIG. 6. �Color online� The time dependence of the initial corre-
lation contribution to the current calculated within the Kadanoff-
Baym-Wagner self-consistent perturbation theory for various U and
E. The current was already scaled with a quadratic extrapolation
��t=0.1, 0.065, and 0.05 and �	=0.1�. The other model parameters
are t0=−5 and �=10.
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iterations for finding each Green’s function. Numerically, we
employ the discretization method which was described in
Sec. IV to solve the Kadanoff-Baym-Wagner NEDMFT
equations. In equilibrium the FKM describes a metal-
insulator transition for the homogeneous phase.21–23 The
Coulomb interaction is divided into two ranges. For weak
interactions �U��2� the system is metallic, and for strong
ones �U��2� the system is an insulator. We will study the
two cases separately.

As a benchmark, we apply the Kadanoff-Baym-Wagner
NEDMFT to the equilibrium FKM at half filling. The DMFT
results of the FKM at equilibrium can be also obtained by
solving the DMFT equations in frequency.28 As noted in Sec.
IV, the summation over momentum is replaced by integration
with the double Gaussian density of states in Eq. �24�; we
use a Gaussian quadrature to perform the calculation. Freer-
icks et al.27 observed that averaging the results of two Gauss-
ian quadratures with n and n+1 points works better than
choosing �2n+1� points for the quadrature. For the equilib-
rium case we adopt this trick. In Fig. 7 we plot the lesser
Green’s function G��T , trel�=�kG��k �T , trel� /N calculated
within the Kadanoff-Baym-Wagner NEDMFT in comparison
with the one obtained by solving the equilibrium DMFT
equations in frequency. Here we have converted the results
from the time variables t and t� to the Wigner average T
= �t+ t�� /2 and relative trel= t− t� time variables. The NED-
MFT calculations are performed with two Gaussian quadra-
tures with 50 and 51 points. We also plot the NEDMFT result
which is obtained by performing only one Gaussian quadra-
ture with 101 points. The results plotted in Fig. 7 confirm the
observation of Freericks et al. Indeed, for a range of small trel
the lesser Green’s function calculated within the NEDMFT
matches perfectly the one obtained within the DMFT. How-
ever, for trel nearby the time cutoffs, the NEDMFT results
exhibit spurious features of a nodal form due to the finite-
size effects of the numerical procedures. These spurious fea-
tures are greatly reduced by employing the trick of two

Gaussian quadratures. However, as we will see later, the spu-
rious features do not appear in the nonequilibrium case,
where the electric field is finite. The lesser Green’s function
obtained within the NEDMFT fulfills the sum rule very well,
as shown in the inset of Fig. 7. Indeed, Im G��T , trel=0�
�0.5 in the weak-interaction case. The sum rule of higher-
order moments of the lesser Green’s function is also fulfilled
because the lesser Green’s function matches perfectly the
DMFT one nearby trel=0. However, if one numerically cal-
culates the sum rule of higher-order moments, a deviation
from the exact value may appear due to numerical derivative
calculations from discretized points.29 The possible deviation
of the sum rule of higher-order moment does not necessarily
mean an inaccuracy of the Green’s function. It relates to the
finite value of �t, which may be not small enough for per-
forming numerical derivative calculations.

In Fig. 8 we plot the imaginary part of the equilibrium
lesser Green’s function calculated within the Kadanoff-
Baym-Wagner NEDMFT and the equilibrium DMFT for U
=2. This value of U corresponds to the insulator phase. It
shows that for strong interactions the NEDMFT results
match well the ones of the equilibrium DMFT for small trel.
The spectral sum rule of the lesser Green’s function is well
fulfilled. Indeed, for U=2, Im G��T=0, trel=0� is equal to
0.5123 for �t=0.1 and is equal to 0.5021 for �t=0.05. In
comparison the exact value is 0.5. Around the minima in the
curve of the imaginary part of the lesser Green’s function,
small deviations appear. The deviations can be reduced by
decreasing �t. For strong interactions the numerical results
slightly deviate from the equilibrium values due to the finite
discretization of the time variables. Nevertheless, the NED-
MFT calculations for the equilibrium case for both weak and
strong interactions show that the numerical techniques em-
ployed here are accurate and controllable.

In the nonequilibrium case, when the electric field is fi-
nite, we notice that the use of two Gaussian quadratures for
the integration with the double Gaussian density of states
gives almost the same result as the use of one Gaussian
quadrature. In Fig. 9 we plot the imaginary part of the lesser
Green’s function calculated by using two Gaussian quadra-
tures of 50 and 51 points in comparison with the one calcu-

FIG. 7. �Color online� The imaginary part of the equilibrium
lesser Green’s function Im G��T=0, trel� calculated within the
Kadanoff-Baym-Wagner NEDMFT by using two Gaussian quadra-
tures �GQ� of 50 and 51 points �black line� and by one Gaussian
quadrature of 101 points �blue line� ��t=0.1, �	=0.1, and t0=
−15� in comparison with the result calculated by solving the equi-
librium DMFT equations in frequency �red line�. The inset focuses
on the imaginary part of the equilibrium lesser Green’s function
G��T=0, trel� obtained by performing the two Gaussian quadratures
of 50 and 51 points in a small range of trel for different �t ��	
=0.1 and t0=−15�. The model parameters are U=0.5 and �=10.

FIG. 8. �Color online� The imaginary part of the equilibrium
lesser Green’s function Im G��T=0, trel� calculated within the
Kadanoff-Baym-Wagner NEDMFT for different �t ��	=0.1 and
t0=−15�. The two Gaussian quadratures with 50 and 51 points are
performed. The equilibrium DMFT calculation result is also pre-
sented �red line�. The model parameters are U=2 and �=10.
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lated by using one Gaussian quadrature of 51 points for both
weak and strong interactions. It shows that the results of both
quadrature methods are almost identical. In contrast to the
equilibrium case, in the nonequilibrium case there are no
spurious features near the time cutoffs. We have also checked
the results with more points for the Gaussian quadrature �in
particular, with n=101�, and with finer �	 �in particular, with
�	=0.05�. It turns out that the numerical results are mostly
sensitive to the real time discretization. In the following for
numerical calculations we use the single Gaussian quadrature
with 51 points and make the integrations over the imaginary
time with �	=0.1 for �=10.

In Fig. 10 we present the lesser Green’s function in the
weak-interaction case for various real time discretizations �t
and a fixed t0. It shows that the imaginary part of the lesser
Green’s function quickly converges with �t. It also indicates
that the spectral sum rule of the lesser Green’s function is
fulfilled well. In Table I we list the values of the spectral sum
rule of the lesser Green’s function for various values of �t.
In the Kadanoff-Baym-Wagner formalism, the spectral sum
rule which is numerically calculated is fulfilled better than
that in the formalism of the contour-ordered Green’s
function.29 The spectral sum rule of the retarded and ad-

vanced Green’s functions is fulfilled well too. The real part
of the lesser Green’s function converges with �t is less
quickly. However, it also converges well for small �t. For
weak interactions the numerical calculations solving the
Kadanoff-Baym-Wagner NEDMFT equations work very
well. For other physical quantities such as the electric current
and the double occupation, their convergences with �t are
also good. In particular, we can obtain converged results at
the limit �t→0 by using a Lagrange interpolation formula.

In Fig. 11 we plot the lesser Green’s function in the
strong-interaction case for various real time discretizations
�t and a fixed t0. The imaginary part of the lesser Green’s
function converges with �t well. However, its spectral sum
rule slightly deviates from the exact value, as presented in
Table I. The real part of the lesser Green’s function con-
verges with �t not so fast as in the weak-interaction case. In
general, for strong interactions the extrapolations of the nu-
merical results of the Kadanoff-Baym-Wagner NEDMFT in
the limit �t→0 require a greater effort. Often in order to
obtain reliable data, we have to carry the numerical calcula-
tions with �t smaller than the ones in the weak-interaction
case.

One notices that the numerical results of the Kadanoff-
Baym-Wagner NEDMFT are independent of the maximal
time tm when �t and t0 are fixed. We plot the electric current
I�t� obtained from the Kadanoff-Baym-Wagner NEDMFT

FIG. 9. �Color online� The imaginary part of the nonequilibrium
lesser Green’s function Im G��T=0, trel� calculated within the
Kadanoff-Baym-Wagner NEDMFT by using two Gaussian quadra-
tures of 50 and 51 points �solid lines�, and by using one Gaussian
quadrature of 51 points �symbols� for weak �U=0.5� and strong
�U=2� interactions ��t=0.1, �	=0.1, t0=−15, �=10, and E=1�.

FIG. 10. �Color online� The imaginary part of the lesser Green’s
function G��T=0, trel� calculated within the Kadanoff-Baym-
Wagner NEDMFT in the weak-interaction case for various �t. The
inset plots the real part of the lesser Green’s function. The model
parameters are U=0.5, E=1, �=10, and t0=−15. n=51 is used for
the Gaussian quadrature and �	=0.1.

TABLE I. The spectral sum rules of the nonequilibrium lesser
Green’s function at the average time T=0 calculated within the
Kadanoff-Baym-Wagner NEDMFT for weak �U=0.5� and strong
�U=2� interactions �E=1�. Various values of �t are used ��	=0.1,
t0=−15, and �=10�.

U=0.5

�t 0.2 0.1 0.05 Exact

Sum rule 0.5007 0.5005 0.5004 0.5

U=2

�t 0.1 0.05 0.025 exact

Sum rule 0.5123 0.5021 0.4983 0.5

FIG. 11. �Color online� The imaginary part of the lesser Green’s
function G��T=0, trel� calculated within the Kadanoff-Baym-
Wagner NEDMFT in the strong-interaction case for various �t. The
inset plots the real part of the lesser Green’s function. The model
parameters are U=2, E=1, �=10, and t0=−15. n=51 for the
Gaussian quadrature and �	=0.1.
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for various tm in Fig. 12. For larger tm the time window is
larger and we can observe the behaviors of the system at a
longer time. But for larger tm the numerical calculations are
also more expensive in time. We have to compromise the
computation time and the need of the time window width.

In Fig. 13 we present the electric currents calculated
within both the Kadanoff-Baym-Wagner and the Keldysh
NEDMFTs in the weak-interaction case. In the Keldysh
NEDMFT, the initial correlations are neglected. The contri-
bution of the initial correlations to the current is defined as
the difference between the currents calculated within the
Kadanoff-Baym-Wagner and the Keldysh NEDMFTs. Cer-
tainly, the current has been previously calculated within the
NEDMFT of the contour-ordered Green’s function.20 We find

that after extrapolating to �t→0 the results of the Kadanoff-
Baym-Wagner formalism agree well with the ones obtained
within the contour-ordered Green’s-function NEDMFT. This
indicates the equivalence of the Kadanoff-Baym-Wagner and
the contour-ordered Green’s-function formalisms, as ex-
pected. However, the Kadanoff-Baym-Wagner formalism
represents the contour-ordered Green’s function in the matrix
form, the elements of which are the physical Green’s func-
tions. It is also similar to the Keldysh formalism. The spec-
tral sum rule obtained within the Kadanoff-Baym-Wagner
NEDMFT is fulfilled very well. The electric current displays
the Bloch oscillations, as observed by Freericks et al.20 For
small and large electric fields �for instance, E=1�, the current
is monotonously damped to zero value. However, when the
electric field increases further �for instance, E=2�, the cur-
rent develops beats. As shown in Fig. 13, in the weak-
interaction case the Keldysh and the Kadanoff-Baym-
Wagner NEDMFTs qualitatively give the same current. The
contribution of the initial correlations to the current also os-
cillates with time in the same way as that for the full current.
When the current displays beats, the initial correlation con-
tribution displays beats too, as shown in Figs. 13 and 14. In
the weak-interaction case, the initial correlation contribution
to the current is small in comparison with the full current.
However, it never vanishes except for t�0 when the electric
field is absent and the current vanishes too. In the inset of
Fig. 14 we plot the initial correlation contribution to the cur-
rent for different initial times t0. It shows that the results are
independent of the initial time if it is far enough from t=0.
The initial correlation contribution seems to be finite even
when the initial time is in the remote past. However, the
initial correlations do not qualitatively change the current
properties in the weak-interaction case.

We also calculate the double occupation D�t�
= �c†�t�c�t�f†�t�f�t��, which can be computed through the
lesser Green’s function Q1

��t , t� defined in Eq. �61� by using

D�t� = − infQ1
��t,t� . �68�

In Fig. 15 we plot the time dependence of the double occu-
pation D�t� calculated within the Kadanoff-Baym-Wagner

FIG. 12. �Color online� The time dependence of the electric
current I�t� / j0 calculated within the Kadanoff-Baym-Wagner NED-
MFT for various time cutoffs tm with fixed �=0.1 and t0=−5 �U
=2, E=1, �	=0.1, and �=10�.

FIG. 13. �Color online� The time dependence of the electric
current I�t� / j0 calculated within the KBW NEDMFT �red line� in
the weak-interaction case for different electric fields. For compari-
son, the result obtained from the K NEDMFT �black line� and the
contribution of the initial correlations to the current �green line� are
also plotted. The data are already scaled with a quadratic extrapo-
lation ��t=0.1, 0.065, and 0.05�. The model parameters are U
=0.5, �=10, and �	=0.1. E=1 �E=2� for the upper �lower� panel.

FIG. 14. �Color online� The time dependence of the contribution
of the initial correlations to the electric current �Iic�t� / j0 for various
E and U in the weak-interaction case. The results are already scaled
by a quadratic extrapolation with �t=0.1, 0.065, and 0.5 �t0=−5,
�	=0.1, and �=10�. The inset plots the scaled contribution of the
initial correlations �Iic�t� / j0 for different initial times t0 �U=0.5,
E=1, �	=0.1, and �=10�.
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and the Keldysh NEDMFTs in the weak-interaction case.
Before the electric field is turned on �t�0�, the double oc-
cupation calculated within the Kadanoff-Baym-Wagner
NEDMFT is constant and in good agreement with the equi-
librium value obtained by solving the DMFT equations in
frequency. However, the Keldysh NEDMFT results are quite
different. Within the Keldysh NEDMFT, the double occupa-
tion starts from its noninteraction value at half filling �D0
=0.25�, and then decreases to a steady value. This steady
value is a little larger than the equilibrium value. At the
initial time t0, the Keldysh formalism starts with a noninter-
acting system and electron correlations are absent. The re-
sults show that before the electric field is turned on, the
Keldysh formalism cannot restore the full electron correla-
tions of the system. The full electron correlations are essen-
tially elaborated from the initial correlations which come
from the dynamics of the system in the imaginary time
branch of the Kadanoff-Baym contour. The neglect of the
initial correlations also means the lack of the electron corre-
lations even when the system is still in equilibrium. In Fig.
15 we also plot the double occupation for different initial
times t0. It shows that even when the initial time approaches
the remote past, the lack of electron correlations still occurs
in the Keldysh formalism. Only in the Kadanoff-Baym for-
malism when the initial correlations are taken into account,
full electron correlations are obtained. After the electric field
is turned on �t�0� for weak and strong electric fields �for
instance, E=1�, the double occupation first oscillates
strongly, and then is damped into less regular oscillations.
However, when the electric field increases further �for in-
stance, E=2�, the double occupation regularly oscillates even
for a long time, as shown in Fig. 16. This behavior is remi-
niscent of the beats of the electric current. In the weak-
interaction case the difference between the double occupa-
tions calculated within the Kadanoff-Baym-Wagner and the
Keldysh formalisms is small in relation to their values. After
the turning on of the electric field, the difference becomes
smaller. In the weak-interaction case the Keldysh formalism
qualitatively describes the behavior of the double occupa-
tion.

In equilibrium when the interaction U��2, the density of
states opens a gap at the Fermi energy, and the system is an

insulator. It distinguishes between the weak- and the strong-
interaction cases. In general, in the strong-interaction case
the numerical calculations slowly converge with �t. Usually,
we have to use more small values of �t in order to get
reliable results. In Fig. 17 we plot the electric current in the
strong-interaction case. In contrast to the weak-interaction
case, the current does not display the regular Bloch oscilla-
tions. The current oscillations are rather irregular and
quenched. However, the current calculated within the
Keldysh NEDMFT still exhibits the regular Bloch oscilla-
tions. This shows that the initial correlations are important in
the strong-interaction case. They are a main factor for
quenching the current oscillations. The contribution of the
initial correlations to the current is not small as in the weak-
interaction case. It is on the order of the current. In the inset
of Fig. 17 we also plot the initial correlation contribution to
the current for different initial times t0. It shows that the
contribution remains the same as the initial time approaches
the remote past. Thus, in the strong-interaction case, the ini-
tial correlations become significant and dominate the overall
properties of the current. The neglect of the initial correla-

FIG. 15. �Color online� The time dependence of the double oc-
cupation D�t� calculated within the KBW and the K NEDMFTs in
the weak-interaction case for different initial times t0. The results
are already scaled by a quadratic extrapolation with �t=0.1, 0.065,
and 0.5. The dotted line is the double occupation at equilibrium
�E=0�. The model parameters are U=0.5, E=1, �	=0.1, and �
=10.

FIG. 16. �Color online� The time dependence of the double oc-
cupation D�t� calculated within the KBW and the K NEDMFTs in
the weak-interaction case for different initial times t0. The results
are already scaled by a quadratic extrapolation with �t=0.1, 0.065,
and 0.5. The dotted line is the double occupation at equilibrium
�E=0�. The model parameters are U=0.5, E=2, �	=0.1, and �
=10.

FIG. 17. �Color online� The time dependence of the electric
current I�t� / j0 calculated within the KBW and the K NEDMFTs for
strong interaction, U=2 and E=1. The contribution of the initial
correlations is also plotted. The inset plots the initial correlation
contribution for different initial times t0. The results are already
scaled by a cubic extrapolation with �t=0.05, 0.035, 0.025, and
0.02 ��	=0.1 and �=10�.
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tions may cause artifacts in the nonequilibrium properties of
the current.

In Fig. 18 we plot the double occupation in the strong-
interaction case. Before the turning on of the electric field,
the time dependence of the double occupation within both
the Kadanoff-Baym-Wagner and the Keldysh NEDMFTs is
similar to that in the weak-interaction case. Within the
Kadanoff-Baym-Wagner formalism, the double occupation is
constant for t�0. The constant value is in good agreement
with the equilibrium value, although there are very little de-
viations due to the finite-size effects in the numerical calcu-
lations. The double occupation calculated within the Keldysh
formalism first starts with the noninteraction value D0
=0.25 at the initial time t0, and then relaxes to a steady value.
Like in the weak-interaction case, the steady value is not the
equilibrium value. It again indicates that the Keldysh formal-
ism loses some part of electron correlations. In the strong-
interaction case this lack of electron correlations becomes
significant. As a consequence, after the turning on of the
electric field, the lack of electron correlations also remains
significant. Due to the quenching of the Bloch oscillations in
the strong-interaction case, the double occupation reaches a
steady value at a long time. The steady values obtained
within the Kadanoff-Baym-Wagner and the Keldysh formal-
isms are quite different. They indicate the important contri-
bution of the initial correlations. As shown in Fig. 18 the
results do not change when the initial time is in the remote
past. For strong interactions the Keldysh formalism loses a
significant part of electron correlations both before and after
the turning on of the electric field. It cannot correctly de-
scribe the nonequilibrium properties.

VI. CONCLUSIONS

In this paper we present the Kadanoff-Baym-Wagner for-
malism for nonequilibrium systems. The formalism is based
on the Wagner representation of the contour-ordered Green’s
function. Within the Kadanoff-Baym-Wagner formalism, the
Green’s functions satisfy the proper boundary conditions.
The initial correlations essentially distinguish between the

Kadanoff-Baym-Wagner and the Keldysh formalisms. We
derive the system of equations for nonequilibrium Green’s
functions, and solve it within the truncated and self-
consistent perturbation theories as well as within the NED-
MFT. As a benchmark, we examine the equilibrium FKM by
the Kadanoff-Baym-Wagner NEDMFT. The results show
good agreement between the Kadanoff-Baym-Wagner NED-
MFT in equilibrium and the equilibrium DMFT. In the non-
equilibrium case the Green’s functions obtained within the
Kadanoff-Baym-Wagner NEDMFT satisfy the spectral sum
rule well. The derived Kadanoff-Baym-Wagner equations for
nonequilibrium Green’s functions are an alternative useful
method for studying nonequilibrium systems.

In this paper we also emphasize the initial correlations.
Within the perturbation theory the initial correlations are al-
ways finite even when the initial time goes to the remote
past. The electric current calculated within the truncated per-
turbation theory shows that the Kadanoff-Baym-Wagner for-
malism overestimates the current, whereas the Keldysh for-
malism underestimates it. However, the Kadanoff-Baym-
Wagner perturbation theory shows better agreement with the
exact solution. For a long time the truncated perturbation
theory fails to describe the physical properties. The self-
consistent perturbation theory gives better results than those
of the truncated perturbation theory. The time domain in
which the self-consistent perturbation theory gives reason-
able results is wider than the one in the truncated perturba-
tion theory. However, the self-consistent perturbation theory
cannot reproduce the beat behaviors of the current for very
strong electric fields. Within the perturbation theories, the
initial correlations do not qualitatively change the perturba-
tion results. Since the Kadanoff-Baym-Wagner and the
Keldysh perturbation theory results are close, the use of the
Keldysh approach is more convenient since its equations are
simpler. In the infinite dimension limit, the NEDMFT gives
the exact solution. By examining the NEDMFT within both
the Kadanoff-Baym-Wagner and the Keldysh formalisms,
one can figure out the role of the initial correlations. For
weak interactions the initial correlations give only small con-
tributions to the physical quantities such as the electric cur-
rent or the double occupation. However, they remain finite
for the long-time limit. The initial correlations are also im-
portant even before the electric field is turned on when the
system is still in equilibrium. Without the initial correlations
the system cannot restore the full electron correlations. For
strong interactions the initial correlations become significant
and dominate the physical properties. Without taking into
account the initial correlations, the Keldysh formalism can
qualitatively describe the nonequilibrium properties of the
system only for weak interactions. For strong interactions it
fails to count full electron correlations. The neglect of the
initial correlations may cause artifacts in the nonequilibrium
properties of the system.
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